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Abstract. Problems of motion on graphs are addressed in this 

paper. These problems represent an abstraction for a variety of 

tasks which goal is to construct a spatial-temporal plan for a set of 

entities that move in a certain environment and need to reach giv-

en goal positions. Specifically, the quality (length) of solutions of 

these problems is studied. Existing state-of-the-art algorithms for 

generating solutions are suspected of producing solutions contain-

ing redundancies of a priori unknown nature. A visualization tool 

has been developed to discover such redundancies. Knowledge 

about solutions acquired by the tool served as a basis for the for-

mal description of redundancies and for the development of me-

thods for their detection and elimination. A performed experimen-

tal evaluation showed that the elimination of described redundan-
cies improved existing solutions significantly. 
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1. INTRODUCTION AND CONTEXT 

Problems of motion on a graph as they are introduced in [5, 8, 12] 

represent a basic abstraction for many real-life and theoretical 
tasks. The classical task that can be abstracted as a problem of 

motion on a graph takes place in a certain physical environment 

where mobile entities are moving (for example mobile robots). 

Each entity is given its initial and goal position in the environ-

ment. The task is to build a spatial-temporal plan for all the enti-

ties such that they reach goal positions following this plan while 
the plan satisfies certain natural constraints. These constraints are 

typically constituted by a requirement that entities must avoid 

obstacles in the environment and must not collide with each other. 

The standard abstraction that is adopted throughout this work 

uses an undirected graph to model the environment. The vertices 

of this graph represent positions in the environment and the edges 
represent an unblocked way between two positions. An arrange-

ment of entities in the environment is abstracted as a simple as-

signment of entities to vertices. At least one vertex remains unoc-

cupied in order to make the movement of entities possible. The 

time is discrete; it is an ordered set of time steps isomorphic to the 

structure of natural numbers. A way how an arrangement of enti-
ties can be transformed into another can slightly differ in variants 

of the problem. 

1.1 Motivation by Practice 

The abstract problems of motion on a graph are motivated by 

many real-life problems. The most typical motivating example is a 
motion planning of a group of mobile robots that are moving in 

2-dimensional space [8]. Generally, if there is enough free space 
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in the environment, algorithms based on search for shortest paths 

in a graph can be used [12]. However, if there is little free space, 

different methods must be used [5, 9, 10]. 

Many well known puzzles can be formulated as the problem 
of motion on a graph. The best known is so called Lloyd’s 15-

puzzle and its generalizations [7, 12]. In practice, various mobile 

or movable objects may represent the entities – for example, a 

rearrangement of containers in a storage area can be interpreted as 

a problem of motion on a graph where entities are represented by 

containers. Indeed, this approach has been used for planning mo-
tions of automated straddle carriers in a storage area in Patrick 

port facility at Port Brisbane in Queensland [8]. Although the 

approach suggested in [8] does not scale for larger number of 

entities, it clearly demonstrates the usefulness of discussed ab-

stractions. Entities do not necessarily have to be physical objects. 

Virtual spaces of computer simulations and games convey many 
situations where motions of certain entities must be planned. 

It is necessary to stress that contrary to multi-agent motion 

planning [4], the centralized approach is adopted in this work. 

That is, the environment is fully observable for the central plan-

ning mechanism and the individual entities merely execute the 

submitted centrally created plan. 

1.2 Specific Open Questions 

There exist several relatively efficient methods for solving prob-

lems of motion on a graph. This work is particularly targeted on 

solution generation methods described in [9, 10]. These methods 

represent state-of-the-art algorithms for the class of problems 
where the graph modeling the environment is bi-connected and 

where there are many entities placed in the graph (the graph is 

relatively full with small unoccupied space). Despite the quali-

ties of these methods, the generated solution are suspected of con-

taining certain redundancies. This is a conjecture whose exami-

nation is the main contribution of this paper. If it is the case that 
generated solutions contain redundancies, then a question how 

they can be removed to improve the solution arises. 

The task is thus to analyze solutions of non-trivial size which 

is manually infeasible. Moreover, it is necessary to emphasize that 

searched redundancies are of a priori unknown nature. Therefore a 

comfortable software tool GraphRec [6] has been developed to 

allow visual analysis of solutions of problems of motion on a 

graph. The GraphRec software solves two issues that are difficult 

to be handled manually. First, the tool draws the graph modeling 

the environment of the problem on the screen. An embedding of 

the graph into two dimensions with few edge crossings is pre-

ferred to enable comfortable observation. Second, motions of 
entities on the graph are visualized by the tool in time. 

Several types of redundancies were discovered by the Graph-

Rec software in solutions. They are formally described in this 

paper. Further, methods for automated discovery and elimination 

of these redundancies are suggested and analyzed theoretically as 

well as experimentally. 
The top level organization of the paper has two parts. The 

first part explains a variant of the problem of motion on a graph 
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(section 2) and the basic solving algorithm (section 3); this part 

merely recalls existing concepts. The second part contains the 

main contribution of this work; the GraphRec visualization tool is 

introduced (section 4), redundancy elimination methods are de-
scribed (section 5), and the benefit of suggested methods is justi-

fied in the experimental section (section 6). 

2. PEBBLE MOTION ON A GRAPH 

The basic variant of the motion problem is known as pebble mo-

tion on a graph [5, 12]. The role of an entity is represented by a 

pebble here. The task is given by an undirected graph with an 

initial and a goal arrangement of pebbles in the vertices of this 

graph. Each vertex of the graph contains at most one pebble and at 
least one vertex remains unoccupied. The task is to find a se-

quence of moves for each pebble such that all the pebbles reach 

their goal vertices. A pebble can move into a neighboring unoc-

cupied vertex while no other pebble is entering the target vertex 

at the same time. The following definition formalizes the problem. 

An illustrative instance of the problem is shown in figure 1. 

Definition 1 (pebble motion on a graph). Let         be an 

undirected graph and let               be a set of pebbles 
where      . The initial arrangement of pebbles is defined by 

a simple function   
      (that is   

        
      for 

            with    ); the goal arrangement of pebbles is 

defined by another simple function   
     . A problem of 

pebble motion on a graph is the task to find a number   and a 

sequence       
    

      
 
  where   

      is a simple func-

tion for every          . The following constraints must hold: 

(i)      
 

   
 , that is, pebbles finally reach their destinations. 

(ii) Either   
       

       or    
       

          for every 

    and            . 

(iii) If   
       

       then    
       

       for      such 

that     must hold for every      and            , 

that is, a pebble can move to a currently unoccupied vertex. 
The problem described above is formally a quadruple   
             

    
  . □ 

 

Figure 1.  An illustration of a problem of pebble motion on a graph. The 

task is to move pebbles from their initial positions specified by   
  to the 

goal positions specified by   
 . A solution of length 6 is shown. 

In practice, the quality of solution matters. The typical meas-

ures of the quality of solution are its length (the total number of 

moves) and duration (which corresponds to the number  ). These 

numbers are required to be small. Unfortunately, requiring either 
the length of the solution or its duration to be as small as possible 

makes the problem intractable [7] (the decision variant of the 

problem is NP-complete). This fact is the main reason why exist-

ing methods for generating optimal solutions do not scale for larg-

er number of entities [8] (the problem is called multi-robot path 

planning in these works). On the other hand, if there is no re-

quirement on the quality, the question whether there exists a 

solution is in the P class [5]. However, methods giving evidence 

that the problem belongs to the P class described in [5] generate 
solutions that are too long and unsuitable for practice. Therefore it 

is necessary to find a compromise between the quality of solution 

and computational cost of its construction. Methods following this 

compromise are described in [9, 10]. Solutions produced by these 

methods will be submitted to analysis by the visualization tool in 

order to find out how they can be further improved. 

3. SOLVING MOTION PROBLEMS 

This section is devoted to a brief recall of algorithms described in 

[9, 10]. An insight into the structure of solutions produced by 

these algorithms is crucial to understand their quality. 

The most important class of pebble motion problems is 

formed by those whose graph is bi-connected which intuitively 
means that each pair of vertices is connected by two disjoint 

paths. The following definition specifies bi-connectivity formally. 

Definition 2 (connectivity, bi-connectivity). An undirected graph 

        is connected if       and for every pair of distinct 

vertices       there exists a path connecting   and   in  . An 

undirected graph         is bi-connected if       and for 

every vertex     the graph                        
            is connected. □ 

The importance of this class of problems is assessed by the 

fact that they are almost always solvable. Moreover, spatial envi-
ronments in real tasks are often abstracted as two dimensional 

grids which are bi-connected in most cases. 

If the bi-connected graph contains at least two unoccupied 

vertices and it is not isomorphic to a cycle, then every goal ar-

rangement of pebbles is reachable from every initial arrangement 

[9]. If the graph contains just one unoccupied vertex which can 
be without loss of generality fixed, then any arrangement of peb-

bles can be regarded as a permutation with respect to the initial 

arrangement. A permutation is even if it can be composed of the 

even number of transpositions; otherwise it is odd. If the goal 

arrangement represents an even permutation, then the problem is 

always solvable. In case of an odd permutation, the problem is 
solvable if and only if the graph contains a cycle of odd length 

[12]. A treatment of instances containing more than two unoccu-

pied vertices will be discussed further. 

 For the sake of completeness, it is adequate to mention the 

case of pebble motion problems on general graphs. This case can 

be solved using methods for bi-connected case. Every undirected 
graph can be decomposed into a tree of bi-connected components 

[11]. Having such a decomposition, the pebbles need to be moved 

into their target bi-connected components first (this may not al-

ways be possible). Then the method for the bi-connected case is 

applied within individual bi-connected components. 

 An inductive construction of bi-connected graphs by adding 
loops is a pivotal concept in developing solving algorithms. Let 

        be a graph, a loop with respect to   is a sequence of 

vertices                   , where       and      for 

          (it is allowed that    ). The result of addition of 

the loop   to the graph   is a new graph           , where 

                  and either              if     or 
                                         if    . Every 

bi-connected graph         can be constructed from a cycle by 

a sequence of loop additions. Such loop decomposition can be 

effectively determined in time            [11]. 
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3.1 The BIBOX-θ Solving Algorithm 

The BIBOX-θ algorithm [10] solves a case of the problem of peb-

ble motion on a graph when the graph is bi-connected and there is 

single unoccupied vertex. The BIBOX-θ algorithm represents 

state-of-the-art for the described class of problems in terms of 

speed and quality of generated solutions. This is the main reason 
why solutions produced by this algorithm are studied here. 

 In the first phase of the algorithm, a loop decomposition is 

found; that is, a cycle - called initial cycle - and a sequence of 

loops is determined. Without loss of generality it is required that 

the unoccupied vertex within the goal arrangement of pebbles is in 

the initial cycle. The algorithm then proceeds inductively accord-
ing to the loop decomposition from the last loop to the initial 

cycle with the first loop.  

 

Figure 2.  The process of placing pebbles into a loop in the stack manner. 

The goal arrangement of pebbles is shown in part A. Parts B and C show a 
process of ordering new pebbles into the loop in case when they are out-

side the loop. Part D and E show ordering process for a pebble when it is 

already inside the loop. Part F shows the final step in which pebbles reach 
their target vertices. The green vertex is unoccupied. 

Two properties of bi-connected graphs with at least one unoc-

cupied vertex are exploited while pebbles are placed within loops: 

(i) every vertex can be made unoccupied (this is even true for a 

connected graph), (ii) every pebble can be moved to an arbitrary 

vertex [9]. A loop is processed in the following way. An orienta-

tion of the loop is chosen first – this orientation determines order-
ing of vertices within the loop. The first and the last vertex of the 

loop are the connection points to the remainder graph. Then peb-

bles starting with the pebble whose goal position is in the second 

vertex of the loop are placed into the loop in the stack manner. 

The current pebble is moved to the last vertex of the loop. 

Two cases must be distinguished here. If the pebble is already 
somewhere in the loop it must be moved outside first. If the cur-

rent pebble is outside the loop, then it can be moved into the last 

vertex of the loop using property (ii) (only pebbles within the sub-

graph without the loop are moved). After placing the pebble into 

the last vertex of the loop, the loop is rotated once in the direction 

to the first vertex. The process is illustrated in figure 2. 
 When all the pebbles within the loop are processed the task is 

to solve the problem of the same type on a smaller graph – the 

finished loop is not considered anymore; a bi-connected graph 

without the last loop is bi-connected again. Nevertheless, the stack 

manner of placing pebbles cannot be applied for the initial cycle 

and the first loop of the decomposition. Therefore the algorithm 

uses a database containing pre-calculated optimal solutions for 

transpositions and rotation of pebbles along 3-cycles in graphs 
consisting of a cycle and a loop. A solution to any solvable in-

stance on the initial cycle with the first loop is then composed of 

solutions from the database [10]. 

 If it is the task to solve an instance of the problem with a bi-

connected graph where there are more than one unoccupied ver-

tices, then all the vertices except one are filled with dummy peb-

bles. The modified problem is then solved by the BIBOX-θ algo-

rithm. Motions of dummy pebbles are finally filtered out of the 

resulting solution [9]. Such a process of producing solutions of 

problems with many unoccupied vertices is suspected of gene-

rating redundant moves that may prolong the solution unnecessa-

rily. However, this statement should be understood as a conjec-

ture that has to be verified first. 

4. VISUALIZATION TOOL 

The examination and reviewing of the solution quality appeared to 

be difficult without certain automation. Therefore, a visualization 
tool GraphRec [6] has been developed (http://www.koupy.net/ 

graphrec.php). The tool provides an animation engine for the enti-

ty movement together with features designed to support the ob-

servation of the solution time line. Any similar tool has not been 

available up until now. With the existing graph visualization soft-

ware (e.g. Graphviz [1]) it is neither possible to represent entities 

nor move them among graph nodes. 

4.1 Functional Requirements 

Before the visualization can even occur, the graph on which the 

movement will be animated have to be embedded on the screen. 

Since we are dealing with bi-connected graphs, which are not 
necessarily planar, the embedding algorithm should reduce the 

amount of crossing edges while maintaining Euclidean distances 

between nodes proportional to the corresponding shortest paths. 

The animation of moving entities is the core feature of the 

application. Since the solution is built over discrete time steps, 

these should be possible to play through or even step through in 
order to increase controllability of the observation. When examin-

ing certain part of the solution it is also necessary to provide ad-

justable speed of the animation and the possibility to jump quickly 

between various time steps. The clearness of the animation must 

be taken into attention as well. It appears that highlighting of 

moving entities greatly improves the overall perception of where 
the motion actually occurs. The demand for user vigilance might 

be further reduced by distinguishing between entities that are al-

ready in their final positions and that are not. 

4.2 Tool Overview 

GraphRec implements two force-directed planar embedding algo-
rithms described in [2, 3]. Both methods are based on the simula-

tion of a certain physical model. Whereas the model introduced in 

[2] considers nodes as repulsive particles and edges as contracting 

springs, another interpretation where chosen free node is con-

nected by springs to the rest of anchored nodes is proposed in [3]. 

Owing to their physical background, force-directed algorithms 
often produce expected and intuitive layouts (figure 3). 

The tool enables all graph elements to be assigned with various 

colors. This is especially important in scenarios such as observa-
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tion of the movement of one particular entity or even group of 

entities, where color differentiation greatly improves their tra-

ceability. Colors are also utilized to distinguish entities in goal 

positions and to highlight moving entities as shown in figure 4. 

 
 

 

 

 

 
 

 
 

 

 

 
 

 

Figure 3. Graph layout gradually evolving into the regular grid. 

Animation of the solution can be controlled in a similar way 

as playing a movie on a video recorder. Firstly, user adjusts the 

animation speed and specifies the starting time step. Then, it is 
possible to play or step through the animation time line. GraphRec 

supports the synchronized animation of more than one solution at 

once, which is for example useful when comparing differently 

optimized solutions for the same problem. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4. Moving entities emphasized by highlighted edges. 

4.3 Discovering Redundancies 

The presented visualization proved itself an effective way for 

discovering the nature of expected redundancies in solutions. 
Since the automatic detection of redundancies with unknown cha-

racteristics is not possible, the analysis by a human is essential. 

Because humans are mainly visual-oriented, the visualization of 

the problem seems to be suitable approach. Acquired knowledge 

was later used to formalize redundancies and to design methods 

for their removal. 

4.4 Additional Features 

GraphRec can find inconsistencies in solution by verifying its 

movements against constraints specified in the definition of the 

variant of motion problem. Solution validation is necessary to 

prevent the corruption of the animation. However, the validation 
can also be utilized for debugging of algorithms. 

Moreover, GraphRec might be used as a presentation tool ei-

ther in real time or to produce media files. The animation can be 

captured into raster and vector images or even into popular video 

formats. These files can be used within web presentations. 

5. ELIMINATION OF REDUNDANCIES 

Several types of redundancies were discovered using the Graph-

Rec software within the generated solutions. A formal description 

of these redundancies and algorithms for their elimination are 

provided in the following sections. The process of transformation 

of a perception gained by the observation of the visualized solu-
tion to a formal description of a redundancy is a creative process. 

It is currently an open question whether some automation of this 

process is possible. 

When reasoning about redundancies, it is convenient to assume 

solutions with just one move between consecutive time steps. The 

BIBOX-θ algorithm produces solutions in this form. A solution of 
this form can be viewed as a sequence of moves where the posi-

tion of a move in the sequence corresponds to its time step of 

commencement. The notation          will denote a move of a 

pebble    from a vertex    to a vertex    commenced at time step 

 . The move is called non-trivial if      . From the formal point 

of view, the solution is a sequence of non-trivial moves   
                       (consistency with definition 1 is 

also assumed). 

5.1 Inverse Moves 

Definition 3 (inverse moves).  A pair of consecutive moves 

         and                with               are 

called inverse if        ,        , and        . □ 

Observe that a pair of inverse moves can be left out of the so-
lution without affecting its validity - it still solves the problem. 

However, elimination of an inverse pair may cause that another 

pair of inverse moves arises. Hence, it is necessary to remove 

inverse moves from the solution repeatedly until there are none.  

The process of elimination of inverse moves is expressed be-

low as algorithm 1. The worst case time complexity of the algo-
rithm is        , space complexity is       . 

Algorithm 1. Elimination of inverse moves. 

function EraseInverseMoves    : sequence 

1: do 
2:      
3:  let                                        
4:  for             do 

5:   if          and                are inverse then 

6:                                  
7:        
8: while     
9: return   

5.2 Redundant Moves 

Definition 4 (redundant moves). A sequence of moves          
              , where                              is 

an increasing sequence of indices, is called redundant if      
   

           ,        , and for each move          with 

            it holds that                   . □ 

Redundant moves represent generalization of inverse moves 

(a pair of inverse moves form a redundant sequence). It is a se-

quence of moves which relocates a pebble into some vertex for 

the second time while other pebbles do not enter this vertex at any 

time step between the beginning and the end of the sequence. 

Eliminating a redundant sequence of moves preserves validity of 
the solution. Again, it is necessary to remove redundant sequences 

repeatedly since its removal may cause that another redundant 

sequence arises. 



Algorithm 2 formalizes the process of removing redundant 

moves in the pseudo-code. The worst case time complexity is 

       , the space complexity is       . 
 
Algorithm 2. Elimination of redundant moves. 

function EraseRedundantMoves    : sequence 

1: do 
2:    FindRedundantMoves    
3:        
4: while     
5: return   

function FindRedundantMoves    : sequence 

6: let                               
7: for             do {beginning of redundant sequence} 

8:  for                 do {end of redundant sequence} 
9:   if             then 
10:        {redundant sequence} 
11:    for             do 
12:     if        then                
13:    if CheckRedundantMoves        then return   
14: return   

function CheckRedundantMoves        : boolean 

15: let                               
16: for                 do 
17:  if                  then return        
18: return      

5.3 Long Sequences 

Definition 5 (long sequence). Let       be a set of vertices oc-

cupied by a set of pebbles   at a time step  . A sequence of moves 

                       , where                    
        ] is an increasing sequence of indices, is called long if 

     
               and there exists a path       

                 in   such that    ,                 , 
and for all the moves          with             it holds 

that                   . □ 

The concept of long sequence is a generalization of redun-

dant sequence (the path   is empty in the case of redundant se-

quence). Intuitively, the long sequence can be replaced by a se-

quence of moves along a shorter path (cutoff path) into which 

other pebbles do not enter between the beginning and the end of 

the sequence. Replacing a long sequence of moves by a sequence 
of moves along the path   again preserves validity of the solution. 

The replacement of long sequences must be performed repeatedly 

since new long sequences may arise. 

The process of replacement is formally expressed below as al-

gorithm 3. The worst case time complexity is        
         ; the space complexity is               . 

5.4 Summary of Redundancy Elimination 

Redundancies described above were discovered using the Graph-

Rec software. Notice that the gradual generalization was adopted 

in the description. Although long sequences subsume both less 

general redundancies, it is not advisable to apply their replace-
ment directly. It is better to apply elimination of redundancies 

stepwise from the less general one to more general ones. The rea-

son for this practice is the increasing time complexity of redun-

dancy elimination algorithms. A sequence of moves submitted to 

the more complex algorithm is potentially shortened by eliminat-

ing less general redundancies using this practice. 
It is possible to reason about the implementation of a certain 

level of automation in the search for other types of redundancies. 

The common requirement shared by all the definitions is that the 

resulting solution must be shorter. 

Algorithm 3. Replacement of long sequences. 

function ReplaceLongMoves      : sequence 

1: do 
2:        FindLongMoves      
3:       ;       
4: while              
5: return   

function FindLongMoves      : pair 

6: let                               
7: for             do 

8:  for                 do 

9:   if       then 
10:        
11:    for             do 
12:     if        then                
13:      CheckLongMoves              
14:    if      then 
15:     let                
16:                               
17:     return       
18: return        

function CheckLongMoves                  : sequence 

19: let                               
20:          ;                ; 

                    
21: for                 do 
22:  if       then 
23:                ;  

                    
24: let   be a shortest path between    and    in            
25: if   is defined and       then return   

26: return    

6. EXPERIMENTAL EVALUATION 

An experimental evaluation was made with the suggested methods 
for redundancy elimination. Algorithms 1, 2, and 3 were imple-

mented in C++ and were tested on a set of benchmark instances of 

the problem of pebble motion. 

 

 

 

 

 

 

 

 

 

 
Figure 5. Solution length improvement in random bi-connected graph. 

Notice that the right part uses the logarithmic scale. The dependence on 

the increasing number of unoccupied vertices is shown. Up to 50% smaller 
solution can be obtained by eliminating redundant or long sequences. 

Solutions found by the BIBOX-θ algorithm were submitted to 

redundancy elimination methods. The reduction of the length of 

the solution and runtime were measured. The implementation of 

redundancy elimination algorithms directly follows the pseudo-

code given in section 5. It was always the case that the solution 

was processed by the less general redundancy elimination before 
it was submitted to more general one. In order to allow reproduci-

bility of experiments the complete source code together with raw 

experimental data is provided at the web: http://ktiml.mff.cuni.cz/ 

~surynek/research/ecaiw2010. 

The first set of problems consists of randomly generated bi-

connected graph with    vertices. The graph was constructed by 
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adding loops of random length (uniform distribution from      ) 

to the cycle of length   (actually tests were done with many ran-

dom bi-connected graphs, indeed only one was selected for pres-

entation here). The initial and the goal arrangement of pebbles 
were generated as random permutations. 

The second set of testing instances consists of a grid of size 

    where the initial and the goal arrangement of pebbles were 

again random permutations. In both cases, the random permuta-

tion was generated by applying quadratic number of random 

transpositions of individual pebbles. 
 

 

 

 

 

 
 

 

 

 
Figure 6. Solution length improvement in the grid 88. The right part 
uses logarithmic scale. Up to 10% smaller solution can be obtained by 

eliminating redundant or long sequences. 

The reduction of the length of the solution depending on the 

increasing number of unoccupied vertices is shown in figures 5 

and 6. Runtime of the individual methods is not presented due to 

space limitations. However, it can be summarized that the long 
sequence replacement is the most time consuming method. It con-

sumed approximately 2 minutes (measured on a 2.4GHz machine) 

on instances with many pebbles. 

It is possible to conclude that the solution can be reduced by 

up to     of the original size for problem on random bi-

connected graph while better results are achieved when there is 
higher number of unoccupied vertices. For the grid    , the 

reduction is not that large; the original size of the solution can be 

reduced by up to about    . Again, problems with higher num-

ber of unoccupied vertices render the possibility for better im-

provements. 

Removal of redundant sequences represents the best trade-off 
between detection cost and solution improvement according to 

performed experiments. Whereas eliminating inverse moves or 

long sequences features utmost situations; the former brings al-

most no improvement; the latter is computationally too costly. 

An expectable result is that the better improvement of solu-

tions is gained when there are more unoccupied vertices in the 
input graph. Notice that definitions of redundancies are based on 

the mutual non-interfering motions of pebbles. The more unoc-

cupied space is available in the graph the less interference be-

tween moves of pebbles is possible. The difference in the im-

provement for random bi-connected graphs and grids is partially 

caused by the difference of the average length of loops of the loop 
decomposition. The smaller these loops are the higher the interac-

tion among pebbles is. 

The most prohibitive aspect of the redundancy elimination 

methods with respect to their eventual practical application is 

quite high runtime. In additional experiments with larger graphs 

the runtime of removal of redundant sequences as well as the run-
time of long sequence replacement was too high. However, this 

issue may be resolved by using better redundancy detection algo-

rithms with lower asymptotic time complexity. This can be done 

by exploiting advanced data structures or by a so called opportu-

nistic redundancy elimination which does not eliminate all the 

redundancies but only those that are encountered. 

7. SUMMARY AND CONCLUSIONS 

This work addressed the quality (length) of solutions of problems 

of pebble motion on a graph. Particularly, solutions generated by 

the existing state-of-the-art algorithm [9, 10] were analyzed with 

respect to presence of certain type of redundancies. If such redun-

dancies really exist, which proved to be the case, their formal 
description and elimination was the next goal of this work. The 

new visualization tool GraphRec has been developed to enable 

comfortable analysis of solutions. 

 Several types of redundancies were discovered using the 

GraphRec software in generated solutions. Methods for elimina-

tion of described redundancies were suggested and experimental-
ly evaluated. The performed experimental evaluation showed that 

solutions can be improved by up to     using the suggested me-

thods. Another finding is that the better improvement can be 

gained for problems with higher number of unoccupied vertices. 
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