
Improving Solutions of Problems of Motion on Graphs
by Redundancy Elimination

Pavel Surynek1 and Petr Koupý2

Abstract. Problems of motion on graphs are addressed in this

paper. These problems represent an abstraction for a variety of

tasks which goal is to construct a spatial-temporal plan for a set of

entities that move in a certain environment and need to reach giv-

en goal positions. Specifically, the quality (length) of solutions of

these problems is studied. Existing state-of-the-art algorithms for

generating solutions are suspected of producing solutions contain-

ing redundancies of a priori unknown nature. A visualization tool

has been developed to discover such redundancies. Knowledge

about solutions acquired by the tool served as a basis for the for-

mal description of redundancies and for the development of me-

thods for their detection and elimination. A performed experimen-

tal evaluation showed that the elimination of described redundan-
cies improved existing solutions significantly.

Keywords: path planning, multiple robots, tractable class, graphs

1. INTRODUCTION AND CONTEXT

Problems of motion on a graph as they are introduced in [5, 8, 12]

represent a basic abstraction for many real-life and theoretical
tasks. The classical task that can be abstracted as a problem of

motion on a graph takes place in a certain physical environment

where mobile entities are moving (for example mobile robots).

Each entity is given its initial and goal position in the environ-

ment. The task is to build a spatial-temporal plan for all the enti-

ties such that they reach goal positions following this plan while
the plan satisfies certain natural constraints. These constraints are

typically constituted by a requirement that entities must avoid

obstacles in the environment and must not collide with each other.

The standard abstraction that is adopted throughout this work

uses an undirected graph to model the environment. The vertices

of this graph represent positions in the environment and the edges
represent an unblocked way between two positions. An arrange-

ment of entities in the environment is abstracted as a simple as-

signment of entities to vertices. At least one vertex remains unoc-

cupied in order to make the movement of entities possible. The

time is discrete; it is an ordered set of time steps isomorphic to the

structure of natural numbers. A way how an arrangement of enti-
ties can be transformed into another can slightly differ in variants

of the problem.

1.1 Motivation by Practice

The abstract problems of motion on a graph are motivated by

many real-life problems. The most typical motivating example is a
motion planning of a group of mobile robots that are moving in

2-dimensional space [8]. Generally, if there is enough free space

1,2 Charles University in Prague, Faculty of Mathematics and Physics,
Malostranské náměstí 25, 118 00 Praha 1, Czech Republic,

pavel.surynek@mff.cuni.cz, petr.koupy@gmail.com.

This work is supported by The Czech Science Foundation under the con-

tract number 201/09/P318 and by The Ministry of Education, Youth and

Sports, Czech Republic under the contract number MSM 0021620838.

in the environment, algorithms based on search for shortest paths

in a graph can be used [12]. However, if there is little free space,

different methods must be used [5, 9, 10].

Many well known puzzles can be formulated as the problem
of motion on a graph. The best known is so called Lloyd’s 15-

puzzle and its generalizations [7, 12]. In practice, various mobile

or movable objects may represent the entities – for example, a

rearrangement of containers in a storage area can be interpreted as

a problem of motion on a graph where entities are represented by

containers. Indeed, this approach has been used for planning mo-
tions of automated straddle carriers in a storage area in Patrick

port facility at Port Brisbane in Queensland [8]. Although the

approach suggested in [8] does not scale for larger number of

entities, it clearly demonstrates the usefulness of discussed ab-

stractions. Entities do not necessarily have to be physical objects.

Virtual spaces of computer simulations and games convey many
situations where motions of certain entities must be planned.

It is necessary to stress that contrary to multi-agent motion

planning [4], the centralized approach is adopted in this work.

That is, the environment is fully observable for the central plan-

ning mechanism and the individual entities merely execute the

submitted centrally created plan.

1.2 Specific Open Questions

There exist several relatively efficient methods for solving prob-

lems of motion on a graph. This work is particularly targeted on

solution generation methods described in [9, 10]. These methods

represent state-of-the-art algorithms for the class of problems
where the graph modeling the environment is bi-connected and

where there are many entities placed in the graph (the graph is

relatively full with small unoccupied space). Despite the quali-

ties of these methods, the generated solution are suspected of con-

taining certain redundancies. This is a conjecture whose exami-

nation is the main contribution of this paper. If it is the case that
generated solutions contain redundancies, then a question how

they can be removed to improve the solution arises.

The task is thus to analyze solutions of non-trivial size which

is manually infeasible. Moreover, it is necessary to emphasize that

searched redundancies are of a priori unknown nature. Therefore a

comfortable software tool GraphRec [6] has been developed to

allow visual analysis of solutions of problems of motion on a

graph. The GraphRec software solves two issues that are difficult

to be handled manually. First, the tool draws the graph modeling

the environment of the problem on the screen. An embedding of

the graph into two dimensions with few edge crossings is pre-

ferred to enable comfortable observation. Second, motions of
entities on the graph are visualized by the tool in time.

Several types of redundancies were discovered by the Graph-

Rec software in solutions. They are formally described in this

paper. Further, methods for automated discovery and elimination

of these redundancies are suggested and analyzed theoretically as

well as experimentally.
The top level organization of the paper has two parts. The

first part explains a variant of the problem of motion on a graph

mailto:pavel.surynek@mff.cuni.cz
mailto:petr.koupy@gmail.com

(section 2) and the basic solving algorithm (section 3); this part

merely recalls existing concepts. The second part contains the

main contribution of this work; the GraphRec visualization tool is

introduced (section 4), redundancy elimination methods are de-
scribed (section 5), and the benefit of suggested methods is justi-

fied in the experimental section (section 6).

2. PEBBLE MOTION ON A GRAPH

The basic variant of the motion problem is known as pebble mo-

tion on a graph [5, 12]. The role of an entity is represented by a

pebble here. The task is given by an undirected graph with an

initial and a goal arrangement of pebbles in the vertices of this

graph. Each vertex of the graph contains at most one pebble and at
least one vertex remains unoccupied. The task is to find a se-

quence of moves for each pebble such that all the pebbles reach

their goal vertices. A pebble can move into a neighboring unoc-

cupied vertex while no other pebble is entering the target vertex

at the same time. The following definition formalizes the problem.

An illustrative instance of the problem is shown in figure 1.

Definition 1 (pebble motion on a graph). Let be an

undirected graph and let be a set of pebbles
where . The initial arrangement of pebbles is defined by

a simple function
 (that is

 for

 with); the goal arrangement of pebbles is

defined by another simple function
 . A problem of

pebble motion on a graph is the task to find a number and a

sequence

 where

 is a simple func-

tion for every . The following constraints must hold:

(i)

 , that is, pebbles finally reach their destinations.

(ii) Either

 or

 for every

 and .

(iii) If

 then

 for such

that must hold for every and ,

that is, a pebble can move to a currently unoccupied vertex.
The problem described above is formally a quadruple

 . □

Figure 1. An illustration of a problem of pebble motion on a graph. The

task is to move pebbles from their initial positions specified by
 to the

goal positions specified by
 . A solution of length 6 is shown.

In practice, the quality of solution matters. The typical meas-

ures of the quality of solution are its length (the total number of

moves) and duration (which corresponds to the number). These

numbers are required to be small. Unfortunately, requiring either
the length of the solution or its duration to be as small as possible

makes the problem intractable [7] (the decision variant of the

problem is NP-complete). This fact is the main reason why exist-

ing methods for generating optimal solutions do not scale for larg-

er number of entities [8] (the problem is called multi-robot path

planning in these works). On the other hand, if there is no re-

quirement on the quality, the question whether there exists a

solution is in the P class [5]. However, methods giving evidence

that the problem belongs to the P class described in [5] generate
solutions that are too long and unsuitable for practice. Therefore it

is necessary to find a compromise between the quality of solution

and computational cost of its construction. Methods following this

compromise are described in [9, 10]. Solutions produced by these

methods will be submitted to analysis by the visualization tool in

order to find out how they can be further improved.

3. SOLVING MOTION PROBLEMS

This section is devoted to a brief recall of algorithms described in

[9, 10]. An insight into the structure of solutions produced by

these algorithms is crucial to understand their quality.

The most important class of pebble motion problems is

formed by those whose graph is bi-connected which intuitively
means that each pair of vertices is connected by two disjoint

paths. The following definition specifies bi-connectivity formally.

Definition 2 (connectivity, bi-connectivity). An undirected graph

 is connected if and for every pair of distinct

vertices there exists a path connecting and in . An

undirected graph is bi-connected if and for

every vertex the graph
 is connected. □

The importance of this class of problems is assessed by the

fact that they are almost always solvable. Moreover, spatial envi-
ronments in real tasks are often abstracted as two dimensional

grids which are bi-connected in most cases.

If the bi-connected graph contains at least two unoccupied

vertices and it is not isomorphic to a cycle, then every goal ar-

rangement of pebbles is reachable from every initial arrangement

[9]. If the graph contains just one unoccupied vertex which can
be without loss of generality fixed, then any arrangement of peb-

bles can be regarded as a permutation with respect to the initial

arrangement. A permutation is even if it can be composed of the

even number of transpositions; otherwise it is odd. If the goal

arrangement represents an even permutation, then the problem is

always solvable. In case of an odd permutation, the problem is
solvable if and only if the graph contains a cycle of odd length

[12]. A treatment of instances containing more than two unoccu-

pied vertices will be discussed further.

 For the sake of completeness, it is adequate to mention the

case of pebble motion problems on general graphs. This case can

be solved using methods for bi-connected case. Every undirected
graph can be decomposed into a tree of bi-connected components

[11]. Having such a decomposition, the pebbles need to be moved

into their target bi-connected components first (this may not al-

ways be possible). Then the method for the bi-connected case is

applied within individual bi-connected components.

 An inductive construction of bi-connected graphs by adding
loops is a pivotal concept in developing solving algorithms. Let

 be a graph, a loop with respect to is a sequence of

vertices , where and for

 (it is allowed that). The result of addition of

the loop to the graph is a new graph , where

 and either if or
 if . Every

bi-connected graph can be constructed from a cycle by

a sequence of loop additions. Such loop decomposition can be

effectively determined in time [11].

S
+

P

S
0

P
v1

v2

v3

v5

v4

v8

v7

1

2

3
v6 v9

v1

v2

v3

v5

v4

v8

v7

2

3

v6 v9

1

=6

Solution of the problem of pebble motion
on a graph with P={1,2,3}

S
0
P

v1
v2
v3

S
6
P=S

+
P

v9
v8
v7

S
1
P

v4
v2
v3

S
2
P

v7
v1
v3

S
3
P

v8
v4
v2

S
4
P

v9
v7
v1

S
5
P

v9
v8
v4

P

1
2
3

3.1 The BIBOX-θ Solving Algorithm

The BIBOX-θ algorithm [10] solves a case of the problem of peb-

ble motion on a graph when the graph is bi-connected and there is

single unoccupied vertex. The BIBOX-θ algorithm represents

state-of-the-art for the described class of problems in terms of

speed and quality of generated solutions. This is the main reason
why solutions produced by this algorithm are studied here.

 In the first phase of the algorithm, a loop decomposition is

found; that is, a cycle - called initial cycle - and a sequence of

loops is determined. Without loss of generality it is required that

the unoccupied vertex within the goal arrangement of pebbles is in

the initial cycle. The algorithm then proceeds inductively accord-
ing to the loop decomposition from the last loop to the initial

cycle with the first loop.

Figure 2. The process of placing pebbles into a loop in the stack manner.

The goal arrangement of pebbles is shown in part A. Parts B and C show a
process of ordering new pebbles into the loop in case when they are out-

side the loop. Part D and E show ordering process for a pebble when it is

already inside the loop. Part F shows the final step in which pebbles reach
their target vertices. The green vertex is unoccupied.

Two properties of bi-connected graphs with at least one unoc-

cupied vertex are exploited while pebbles are placed within loops:

(i) every vertex can be made unoccupied (this is even true for a

connected graph), (ii) every pebble can be moved to an arbitrary

vertex [9]. A loop is processed in the following way. An orienta-

tion of the loop is chosen first – this orientation determines order-
ing of vertices within the loop. The first and the last vertex of the

loop are the connection points to the remainder graph. Then peb-

bles starting with the pebble whose goal position is in the second

vertex of the loop are placed into the loop in the stack manner.

The current pebble is moved to the last vertex of the loop.

Two cases must be distinguished here. If the pebble is already
somewhere in the loop it must be moved outside first. If the cur-

rent pebble is outside the loop, then it can be moved into the last

vertex of the loop using property (ii) (only pebbles within the sub-

graph without the loop are moved). After placing the pebble into

the last vertex of the loop, the loop is rotated once in the direction

to the first vertex. The process is illustrated in figure 2.
 When all the pebbles within the loop are processed the task is

to solve the problem of the same type on a smaller graph – the

finished loop is not considered anymore; a bi-connected graph

without the last loop is bi-connected again. Nevertheless, the stack

manner of placing pebbles cannot be applied for the initial cycle

and the first loop of the decomposition. Therefore the algorithm

uses a database containing pre-calculated optimal solutions for

transpositions and rotation of pebbles along 3-cycles in graphs
consisting of a cycle and a loop. A solution to any solvable in-

stance on the initial cycle with the first loop is then composed of

solutions from the database [10].

 If it is the task to solve an instance of the problem with a bi-

connected graph where there are more than one unoccupied ver-

tices, then all the vertices except one are filled with dummy peb-

bles. The modified problem is then solved by the BIBOX-θ algo-

rithm. Motions of dummy pebbles are finally filtered out of the

resulting solution [9]. Such a process of producing solutions of

problems with many unoccupied vertices is suspected of gene-

rating redundant moves that may prolong the solution unnecessa-

rily. However, this statement should be understood as a conjec-

ture that has to be verified first.

4. VISUALIZATION TOOL

The examination and reviewing of the solution quality appeared to

be difficult without certain automation. Therefore, a visualization
tool GraphRec [6] has been developed (http://www.koupy.net/

graphrec.php). The tool provides an animation engine for the enti-

ty movement together with features designed to support the ob-

servation of the solution time line. Any similar tool has not been

available up until now. With the existing graph visualization soft-

ware (e.g. Graphviz [1]) it is neither possible to represent entities

nor move them among graph nodes.

4.1 Functional Requirements

Before the visualization can even occur, the graph on which the

movement will be animated have to be embedded on the screen.

Since we are dealing with bi-connected graphs, which are not
necessarily planar, the embedding algorithm should reduce the

amount of crossing edges while maintaining Euclidean distances

between nodes proportional to the corresponding shortest paths.

The animation of moving entities is the core feature of the

application. Since the solution is built over discrete time steps,

these should be possible to play through or even step through in
order to increase controllability of the observation. When examin-

ing certain part of the solution it is also necessary to provide ad-

justable speed of the animation and the possibility to jump quickly

between various time steps. The clearness of the animation must

be taken into attention as well. It appears that highlighting of

moving entities greatly improves the overall perception of where
the motion actually occurs. The demand for user vigilance might

be further reduced by distinguishing between entities that are al-

ready in their final positions and that are not.

4.2 Tool Overview

GraphRec implements two force-directed planar embedding algo-
rithms described in [2, 3]. Both methods are based on the simula-

tion of a certain physical model. Whereas the model introduced in

[2] considers nodes as repulsive particles and edges as contracting

springs, another interpretation where chosen free node is con-

nected by springs to the rest of anchored nodes is proposed in [3].

Owing to their physical background, force-directed algorithms
often produce expected and intuitive layouts (figure 3).

The tool enables all graph elements to be assigned with various

colors. This is especially important in scenarios such as observa-

bi-connected remainder

-

p4

p2

p1

p3

p5

bi-connected remainder

-

-

-

-

-

p1

p1

bi-connected remainder

-

p1

p3

-

-

p2

p3

bi-connected remainder

p2

-

-

-

-

p1

p2

bi-connected remainder

p5

p3

p1

-

p2

p4

p5

A B

C D

F E

-

p1

p1

-

p2

p2

p3

bi-connected remainder

1
st
 vertex

2
nd

 vertex

last vertex

http://www.koupy.net/graphrec.php
http://www.koupy.net/graphrec.php

tion of the movement of one particular entity or even group of

entities, where color differentiation greatly improves their tra-

ceability. Colors are also utilized to distinguish entities in goal

positions and to highlight moving entities as shown in figure 4.

Figure 3. Graph layout gradually evolving into the regular grid.

Animation of the solution can be controlled in a similar way

as playing a movie on a video recorder. Firstly, user adjusts the

animation speed and specifies the starting time step. Then, it is
possible to play or step through the animation time line. GraphRec

supports the synchronized animation of more than one solution at

once, which is for example useful when comparing differently

optimized solutions for the same problem.

Figure 4. Moving entities emphasized by highlighted edges.

4.3 Discovering Redundancies

The presented visualization proved itself an effective way for

discovering the nature of expected redundancies in solutions.
Since the automatic detection of redundancies with unknown cha-

racteristics is not possible, the analysis by a human is essential.

Because humans are mainly visual-oriented, the visualization of

the problem seems to be suitable approach. Acquired knowledge

was later used to formalize redundancies and to design methods

for their removal.

4.4 Additional Features

GraphRec can find inconsistencies in solution by verifying its

movements against constraints specified in the definition of the

variant of motion problem. Solution validation is necessary to

prevent the corruption of the animation. However, the validation
can also be utilized for debugging of algorithms.

Moreover, GraphRec might be used as a presentation tool ei-

ther in real time or to produce media files. The animation can be

captured into raster and vector images or even into popular video

formats. These files can be used within web presentations.

5. ELIMINATION OF REDUNDANCIES

Several types of redundancies were discovered using the Graph-

Rec software within the generated solutions. A formal description

of these redundancies and algorithms for their elimination are

provided in the following sections. The process of transformation

of a perception gained by the observation of the visualized solu-
tion to a formal description of a redundancy is a creative process.

It is currently an open question whether some automation of this

process is possible.

When reasoning about redundancies, it is convenient to assume

solutions with just one move between consecutive time steps. The

BIBOX-θ algorithm produces solutions in this form. A solution of
this form can be viewed as a sequence of moves where the posi-

tion of a move in the sequence corresponds to its time step of

commencement. The notation will denote a move of a

pebble from a vertex to a vertex commenced at time step

 . The move is called non-trivial if . From the formal point

of view, the solution is a sequence of non-trivial moves
 (consistency with definition 1 is

also assumed).

5.1 Inverse Moves

Definition 3 (inverse moves). A pair of consecutive moves

 and with are

called inverse if , , and . □

Observe that a pair of inverse moves can be left out of the so-
lution without affecting its validity - it still solves the problem.

However, elimination of an inverse pair may cause that another

pair of inverse moves arises. Hence, it is necessary to remove

inverse moves from the solution repeatedly until there are none.

The process of elimination of inverse moves is expressed be-

low as algorithm 1. The worst case time complexity of the algo-
rithm is , space complexity is .

Algorithm 1. Elimination of inverse moves.

function EraseInverseMoves : sequence

1: do
2:
3: let
4: for do

5: if and are inverse then

6:
7:
8: while
9: return

5.2 Redundant Moves

Definition 4 (redundant moves). A sequence of moves
 , where is

an increasing sequence of indices, is called redundant if

 , , and for each move with

 it holds that . □

Redundant moves represent generalization of inverse moves

(a pair of inverse moves form a redundant sequence). It is a se-

quence of moves which relocates a pebble into some vertex for

the second time while other pebbles do not enter this vertex at any

time step between the beginning and the end of the sequence.

Eliminating a redundant sequence of moves preserves validity of
the solution. Again, it is necessary to remove redundant sequences

repeatedly since its removal may cause that another redundant

sequence arises.

Algorithm 2 formalizes the process of removing redundant

moves in the pseudo-code. The worst case time complexity is

 , the space complexity is .

Algorithm 2. Elimination of redundant moves.

function EraseRedundantMoves : sequence

1: do
2: FindRedundantMoves
3:
4: while
5: return

function FindRedundantMoves : sequence

6: let
7: for do {beginning of redundant sequence}

8: for do {end of redundant sequence}
9: if then
10: {redundant sequence}
11: for do
12: if then
13: if CheckRedundantMoves then return
14: return

function CheckRedundantMoves : boolean

15: let
16: for do
17: if then return
18: return

5.3 Long Sequences

Definition 5 (long sequence). Let be a set of vertices oc-

cupied by a set of pebbles at a time step . A sequence of moves

 , where
] is an increasing sequence of indices, is called long if

 and there exists a path

 in such that , ,
and for all the moves with it holds

that . □

The concept of long sequence is a generalization of redun-

dant sequence (the path is empty in the case of redundant se-

quence). Intuitively, the long sequence can be replaced by a se-

quence of moves along a shorter path (cutoff path) into which

other pebbles do not enter between the beginning and the end of

the sequence. Replacing a long sequence of moves by a sequence
of moves along the path again preserves validity of the solution.

The replacement of long sequences must be performed repeatedly

since new long sequences may arise.

The process of replacement is formally expressed below as al-

gorithm 3. The worst case time complexity is
 ; the space complexity is .

5.4 Summary of Redundancy Elimination

Redundancies described above were discovered using the Graph-

Rec software. Notice that the gradual generalization was adopted

in the description. Although long sequences subsume both less

general redundancies, it is not advisable to apply their replace-
ment directly. It is better to apply elimination of redundancies

stepwise from the less general one to more general ones. The rea-

son for this practice is the increasing time complexity of redun-

dancy elimination algorithms. A sequence of moves submitted to

the more complex algorithm is potentially shortened by eliminat-

ing less general redundancies using this practice.
It is possible to reason about the implementation of a certain

level of automation in the search for other types of redundancies.

The common requirement shared by all the definitions is that the

resulting solution must be shorter.

Algorithm 3. Replacement of long sequences.

function ReplaceLongMoves : sequence

1: do
2: FindLongMoves
3: ;
4: while
5: return

function FindLongMoves : pair

6: let
7: for do

8: for do

9: if then
10:
11: for do
12: if then
13: CheckLongMoves
14: if then
15: let
16:
17: return
18: return

function CheckLongMoves : sequence

19: let
20: ; ;

21: for do
22: if then
23: ;

24: let be a shortest path between and in
25: if is defined and then return

26: return

6. EXPERIMENTAL EVALUATION

An experimental evaluation was made with the suggested methods
for redundancy elimination. Algorithms 1, 2, and 3 were imple-

mented in C++ and were tested on a set of benchmark instances of

the problem of pebble motion.

Figure 5. Solution length improvement in random bi-connected graph.

Notice that the right part uses the logarithmic scale. The dependence on

the increasing number of unoccupied vertices is shown. Up to 50% smaller
solution can be obtained by eliminating redundant or long sequences.

Solutions found by the BIBOX-θ algorithm were submitted to

redundancy elimination methods. The reduction of the length of

the solution and runtime were measured. The implementation of

redundancy elimination algorithms directly follows the pseudo-

code given in section 5. It was always the case that the solution

was processed by the less general redundancy elimination before
it was submitted to more general one. In order to allow reproduci-

bility of experiments the complete source code together with raw

experimental data is provided at the web: http://ktiml.mff.cuni.cz/

~surynek/research/ecaiw2010.

The first set of problems consists of randomly generated bi-

connected graph with vertices. The graph was constructed by

0

2000

4000

6000

8000

2 6 10 14 18 22 26 30 34 38 42

N
u

m
b

e
r

o
f

m
o

ve
s

Sequential Solution Size
random bi-connected

Original
Inverse
Redundant
Long

1

10

100

1000

10000

46 50 54 58 62 66 70 74 78 82 86

N
u

m
b

e
r

o
f

m
o

ve
s

Sequential Solution Size
random bi-connected

Original
Inverse
Redundant
Long

Number of unoccupied vertices Number of unoccupied vertices

http://ktiml.mff.cuni.cz/%20~surynek/research/ecaiw2010
http://ktiml.mff.cuni.cz/%20~surynek/research/ecaiw2010

adding loops of random length (uniform distribution from)

to the cycle of length (actually tests were done with many ran-

dom bi-connected graphs, indeed only one was selected for pres-

entation here). The initial and the goal arrangement of pebbles
were generated as random permutations.

The second set of testing instances consists of a grid of size

 where the initial and the goal arrangement of pebbles were

again random permutations. In both cases, the random permuta-

tion was generated by applying quadratic number of random

transpositions of individual pebbles.

Figure 6. Solution length improvement in the grid 88. The right part
uses logarithmic scale. Up to 10% smaller solution can be obtained by

eliminating redundant or long sequences.

The reduction of the length of the solution depending on the

increasing number of unoccupied vertices is shown in figures 5

and 6. Runtime of the individual methods is not presented due to

space limitations. However, it can be summarized that the long
sequence replacement is the most time consuming method. It con-

sumed approximately 2 minutes (measured on a 2.4GHz machine)

on instances with many pebbles.

It is possible to conclude that the solution can be reduced by

up to of the original size for problem on random bi-

connected graph while better results are achieved when there is
higher number of unoccupied vertices. For the grid , the

reduction is not that large; the original size of the solution can be

reduced by up to about . Again, problems with higher num-

ber of unoccupied vertices render the possibility for better im-

provements.

Removal of redundant sequences represents the best trade-off
between detection cost and solution improvement according to

performed experiments. Whereas eliminating inverse moves or

long sequences features utmost situations; the former brings al-

most no improvement; the latter is computationally too costly.

An expectable result is that the better improvement of solu-

tions is gained when there are more unoccupied vertices in the
input graph. Notice that definitions of redundancies are based on

the mutual non-interfering motions of pebbles. The more unoc-

cupied space is available in the graph the less interference be-

tween moves of pebbles is possible. The difference in the im-

provement for random bi-connected graphs and grids is partially

caused by the difference of the average length of loops of the loop
decomposition. The smaller these loops are the higher the interac-

tion among pebbles is.

The most prohibitive aspect of the redundancy elimination

methods with respect to their eventual practical application is

quite high runtime. In additional experiments with larger graphs

the runtime of removal of redundant sequences as well as the run-
time of long sequence replacement was too high. However, this

issue may be resolved by using better redundancy detection algo-

rithms with lower asymptotic time complexity. This can be done

by exploiting advanced data structures or by a so called opportu-

nistic redundancy elimination which does not eliminate all the

redundancies but only those that are encountered.

7. SUMMARY AND CONCLUSIONS

This work addressed the quality (length) of solutions of problems

of pebble motion on a graph. Particularly, solutions generated by

the existing state-of-the-art algorithm [9, 10] were analyzed with

respect to presence of certain type of redundancies. If such redun-

dancies really exist, which proved to be the case, their formal
description and elimination was the next goal of this work. The

new visualization tool GraphRec has been developed to enable

comfortable analysis of solutions.

 Several types of redundancies were discovered using the

GraphRec software in generated solutions. Methods for elimina-

tion of described redundancies were suggested and experimental-
ly evaluated. The performed experimental evaluation showed that

solutions can be improved by up to using the suggested me-

thods. Another finding is that the better improvement can be

gained for problems with higher number of unoccupied vertices.

REFERENCES
[1] Bilgin, A., Ellson, J., Gansner, E., Hu, Y., Koren, Y., North, S.

Graphviz - Graph Visualization Software. Project web page,

http://www.graphviz.org, 2009, (September 2009).
[2] Fruchterman, T. M. J. and Reingold, E. M. Graph Drawing by

Force-Directed Placement. Software: Practice and Experience, Vo-

lume 21(November 1991), 1129-1164, John Wiley & Sons, 1991.
[3] Kamada, T. and Kawai, S. An algorithm for drawing general undi-

rected graphs. Information Processing Letters, Volume 31 (January

1989), pp. 7-15, Elsevier, 1989.
[4] Kishimoto, A., Sturtevant, N. R. Optimized algorithms for multi-

agent routing. Proceedings of the 7th International Joint Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2008),
Volume 3, pp. 1585-1588, IFAAMAS 2008.

[5] Kornhauser, D., Miller, G. L., Spirakis, P. G. Coordinating Pebble

Motion on Graphs, the Diameter of Permutation Groups, and Appli-
cations. Proceedings of the 25th Annual Symposium on Foundations

of Computer Science (FOCS 1984), pp. 241-250, IEEE Press, 1984.

[6] Koupý, P. GraphRec - a visualization tool for entity movement on
graph. Student project web page, http://www.koupy.net/

graphrec.php, 2010, (January 2010).

[7] Ratner, D. and Warmuth, M. K. Finding a Shortest Solution for the
N×N Extension of the 15-PUZZLE Is Intractable. Proceedings of the

5th National Conference on Artificial Intelligence (AAAI 1986), pp.

168-172, Morgan Kaufmann Publishers, 1986.
[8] Ryan, M. R. K. Exploiting subgraph structure in multi-robot path

planning. Journal of Artificial Intelligence Research (JAIR), Volume

31, (January 2008), pp. 497-542, AAAI Press, 2008.
[9] Surynek, P. A Novel Approach to Path Planning for Multiple Robots

in Bi-connected Graphs. Proceedings of the 2009 IEEE International

Conference on Robotics and Automation (ICRA 2009), pp. 3613-
3619, IEEE Press, 2009.

[10] Surynek, P. An Application of Pebble Motion on Graphs to Abstract

Multi-robot Path Planning. Proceedings of the 21st International
Conference on Tools with Artificial Intelligence (ICTAI 2009), pp.

151-158, IEEE Press, 2009.

[11] Tarjan, R. E. Depth-First Search and Linear Graph Algorithms.
SIAM Journal on Computing, Volume 1 (2), pp. 146-160, Society

for Industrial and Applied Mathematics, 1972.

[12] Wang, K. C., Botea, A. Tractable Multi-Agent Path Planning on
Grid Maps. Proceedings of the 21st International Joint Conference

on Artificial Intelligence (IJCAI 2009), pp. 1870-1875, IJCAI Con-

ference, 2009.
[13] Wilson, R. M. Graph Puzzles, Homotopy, and the Alternating

Group. Journal of Combinatorial Theory, Ser. B 16, pp. 86-96, El-

sevier, 1974.

0

500

1000

1500

2000

2 6 10 14 18 22 26 30

N
u

m
b

er
 o

f
m

o
ve

s

Sequential Solution Size
grid 8x8

Original
Inverse
Redundant
Long

1

10

100

1000

33 37 41 45 49 53 57 61

N
u

m
b

er
 o

f
m

o
ve

s

Sequential Solution Size
grid 8x8

Original
Inverse
Redundant
Long

Number of unoccupied vertices Number of unoccupied vertices

http://www.graphviz.org/
http://www.koupy.net/graphrec.php
http://www.koupy.net/graphrec.php

